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ABSTRACT 

 

In the present study, we have obtained Bianchi type VI anisotropic model of the universe filled with a bulk 

viscous stress in the presence of variable gravitational and cosmological constants. Here we have assumed the 

cosmological term in the form 2H  to discuss the effect of cosmological variables. It is found that the bulk 

viscosity coefficient ( )  is a decreasing function of time. The expression for proper distance, luminosity distance, 

angular diameter distance, look back time and distance modulus curve have been analyzed and also the distance 

modulus curve of derived model nearly matches with Supernova Ia (SN Ia) observations. 

Keywords : Bianchi Type VI, Bulk Viscous Stress, Gravitational and Cosmological Parameters 

 

I. INTRODUCTION 

 

Cosmology is one of the great estintellectual 

achievements of all time beginning from its origin. It 

is that branch of astronomy, which deals with the 

large scale structure of the universe. Using 

astronomical data, our resulting cosmological model 

of universe compare with the present day universe. 

Cosmic fluid is considered as perfect fluid in most 

treatments of cosmology. However, bulk viscosity is 

expected to play an important role at certain stages of 

an expanding universe. Nowadays viscosity 

mechanism has attracted the attention of many 

researchers. At early stages of evolution of the 

universe, when radiation is in the form of photons as 

well as neutrino decoupled, the matter behaved like a 

viscous fluid. 

 

In recent years there has been considerable interest in 

the cosmological models with variable gravitational 

constant G and the cosmological constant  . 

Variation of gravitational constant was first suggested 

by Dirac [1] in an attempt to understand the 

appearance of certain very large numbers, when 

atomic and cosmic world are compared. He postulates 

that the gravitational constant G decreases inversely 

with cosmic time. Beesham [2] has studied the 

creation with variable G and pointed out the variation 

of the form G~t-1 originally proposed by Dirac [1]. 

 

On the other hand, in 1917 Einstein introduced the 

cosmological constant  to account for a stable static 

universe as appeared to him at that time. It is believed 

that the cosmological constant was very large in the 

early universe, relaxed to its present small value in 

the course of expansion of the universe by creating 

massive or massless particles. Cosmological constant 

problem arises because of large discrepancy between 

the observational value of  and the theoretical value. 

Many solutions convening to this problem were 
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proposed by considering dynamical  [3]-[10]. It is 

found that the presence of a non-zero cosmological 

constant is one of the most important reason for the 

acceleration [11, 12]. Discussion on cosmology with a 

time varying cosmological constant is presented by 

several authors. Samdurkar and Sen [13] investigated 

the effect of bulk viscosity on Bianchi Type V 

cosmological models with varying   in general 

relativity. Dwivedi analyzed that Bulk viscous Bianchi 

type –V cosmological models with stiff fluid and time 

dependent cosmological term [14]. Some Bianchi type 

VI viscous fluid cosmological models were 

investigated by Patel and Kopper [15]. Dunn and 

Tupper [16] studied a class of Bianchi type VI 

cosmological models with electromagnetic field. 

Arbab [17] investigated the cosmological models with 

variable cosmological and gravitational constants and 

bulk viscous fluid. A new class of LRS Bianchi type 

VI0 universe with free gravitational field and 

Decaying vacuum energy density were proposed by 

Pradhan et.al. [18]. A number of authors [19]-[30] 

have studied the variation of G and  within the 

framework of general relativity in different context. 

 

Eckart [31] has made the first attempt to develop the 

relativistic theory of nonequilibrium thermodynamics 

to study the effect of bulk viscosity. But Eckart theory 

has several drawbacks including violation of causality 

and stability.  Readers interested in the general theory 

of causal thermodynamics are urged to consult the 

excellent survey report of Maartens [32] and Zimdahl 

[33] and references cited therein. 

 

With the above motivations, in this paper we have 

studied Bianchi type VI cosmological model filled 

variable G and in the presence of bulk viscous stress 

in the framework of general relativity. We have also 

obtained bulk viscosity coefficient in Eckart, 

Truncated and FIS causal theory. The expression for 

proper distance, luminosity distance, angular 

diameter distance, look back time and distance 

modulus curve have been analyzed and also the 

distance modulus curve of derived model nearly 

matches with Supernova Ia (SN Ia) observations. 

 

II.  METRIC AND FIELD EQUATIONS  

 

It is well-known that the energy-momentum tensor 

Tij in the form of bulk viscous stress may be 

considered as  

 

ijijij gpupT )()( +−++=             (1) 

Here p,  and   represents energy density, perfect 

fluid pressure and bulk viscous stress respectively and 

ui is the four velocity vector. 

 

Here we consider the spatially homogeneous and 

anisotropic Bianchi type VI space time in the form 

 
222

3

222

2

22
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22 dzeAdyeAdxAdtds xx  +++−= −
         (2) 

where
21, AA and 3A  are functions of the cosmic time 

t and   is a constant. 

 

The Einstein field equations are 

ijijijij gGTRgR +−=− 8
2

1
           (3)  

Here Rij is the Ricci tensor, R is the Ricci scalar 

curvature, Tij is the energy–momentum tensor of 

matter. 

 

In co-moving coordinate system ui= (0, 0, 0, 1), the 

Einstein’s field equation together with (1) for the 

metric (2) yields 
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where a dot denotes ordinary differentiation with 

respect to t. 

The average scale factor R and volume V are given by  

321

3 AAAVR ==
                                                           

(9) 

The energy conservation equation is  

0
8

)(3 =


+++++
GG

G
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
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
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(10) 

which splits into 

0)(3 =+++ Hp                                                 (11) 

and 

08 =+  G                                                            (12) 

The generalized mean Hubble parameter H is defined 

by 
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where the directional Hubble parameters H1, H2 and 

H3 are given by  
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The scalar expansion and shear scalar are given by 
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The deceleration parameter q is defined by 

2R

RR
q




−=

                                                                  

(17) 

The sign of q indicates whether the model inflates or 

not. A positive sign of q corresponds to the standard 

decelerating model whereas the negative sign of q 

indicates inflation. The recent observations of SNIa 

(Reiss et.al. [34], Perlmutter et.al.[35]) reveal that the 

present universe is accelerating and the value of DP 

lies somewhere in the range -1<q<0. 

 

III.  SOLUTION OF FIELD EQUATIONS  

 

From Eqn. (8), we get          
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(18)  

Using (18), Eqn. (4)-(7) reduces to 
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Here we assume the cosmological term as a function 

of Hubble parameter H in the following form (Arbab 

[36]) 

 
23 H=                                                                (22) 

In order to solve the above Eqns., we use the physical 

condition that expansion scalar is proportional to 

shear scalar, which leads to   
nAA 21 =      where n>1                                            (23) 

 

Combining Eqn. (9), (18) and (23), we have 
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Substituting Eqn. (24) and (25) in (26), we get  
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after the first integral of Eqn. (27) , we obtain 

t
n

n

KV

dV

n
1

)2(

0
2

4 −

+
=

+


+



                                            

(28) 

where 0K  is an arbitrary constant. 

It is clear that  Eqn. (28)is not possible to solve in 

general, so in order to solve the problem completely 

we have to choose 00 =K
 
so that (28) be integrable.  

Hence the solution of Eqn. (28) is 
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Hence we have 
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with these scale factors, the metric (2) can be written 

as 
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with the help of Eqn. (30) and (31), Hubble parameter

)(H , expansion scalar )( , shear scalar )( and 

deceleration parameter )(q  can be obtained as 
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From Eqn. (21), we get 
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From Eqn. (37) and (38), we get 
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Integrating the above Eqn. one can obtain 
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where 0M  is an integrating constant. 

Substituting Eqn. (40) in Eqn. (37), it gives 
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The energy density should be positive for the 

condition
2

3

+


n
 . Also it can be easily seen that the 

energy density is always a decreasing function during 

evolution of the universe.  

 

By assuming EOS =p , we write 
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In (Extended irreversible thermodynamics (EIT), the 

bulk viscous stress   satisfies a transport equation 

given by 
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where relaxation time and T is temperature. The 

parameter  takes the value 0 or 1. Here 0=

represents truncated Israel-Stewart theory, 1=

represents full Isreal-Stewart causal theory and 0=  

recovers the non-causal Eckart theory. 

The Gibb’s integrability condition [Maarten (1995)] is 

defined as 
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Using EOS, (45) reduces to 
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where 0T  is a constant. 

 

Using (41) in (45), the temperature )(T is as follows 
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It is been observed that the density )( , the 

cosmological constant )( and the temperature )(T  

are decreasing function of time which can be seen in  

Fig. 1, Fig. 2 and Fig. 3 whereas the gravitational 

constant )(G is increasing function of time which is 

shown in Fig. 4. 

 

     

 
Bulk Viscosity in Eckart’s Theory: 

 

The evolution Eqn. (44) for bulk viscosity in non-

causal Eckart’s theory reduces to  

H3−=             (48) 

with the help of (33) and (43), we get bulk viscosity 

coefficient as 
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(49) 

 

Bulk Viscosity in Truncated Theory:  

 

In truncated theory (i.e. 0= ), the evolution Eqn. 

(44) for bulk viscosity reduces to  

H 34 −=+           (50) 
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The relation between  and coefficient of bulk 

viscosity   is given by  




 =             (51) 

Thus the Eqn. (50) reduces to 
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Using Eqns. (33), (41) and (43), we obtain 
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Bulk Viscosity in FIS Causal Theory: 

 

In FIS theory (i.e. 1= ), the evolution Eqn. (44) for 

bulk viscosity reduces to  
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(54) 

To investigate the consistency of the model (32), we 

measure the physical parameters such as proper 

distance, luminosity distance, angular diameter etc. 

 

Proper Distance 

The proper distance )(zd is defined as the distance 

between a cosmic source emitting light at any instant 

1tt =  located at 1rr =  with redshift z and an 

observer at 0=r and 0tt =  receiving the light from 

the source emitted i.e. 
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where
R

R
z 01 =+ = redshift and 0R is the present scale 

factor of the universe. 

 

 

Luminosity Distance 

Luminosity distance is the important concept of 

theoretical cosmology of a light source. The 

luminosity distance is a way of expanding the amount 

of light received from a distant object. It is defined in 

such a way as generalizes the inverse-square law of 

the brightness in the static Euclidean space to an 

expanding curved space. 

The luminosity distance of a light source is defined as  

l

L
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4

2 =             (57) 

where L is the absolute luminosity and l is the 

apparent luminosity of source. Therefore one can 

write 
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Using (56), Eqn. (58) reduces to 
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Angular Diameter Distance 

The angular diameter distance is a measure of how 

large objects appear to be. As with the luminosity 

distance, it is defined as the distance that an object of 

known physical extent appears to be at, under the 

assumption of the Euclidean geometry. 

The angular diameter Ad  of a light source of proper 

distance is given by  

LA dzd 2)1( −+=           (60) 

Using (59), we get 
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Look back Time 
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The look back time is defined as the elapsed time 

between the present age of universe 0t and the time t

when the light from a cosmic source at a particular 

redshift z  was emitted. 

In the context of our model it is given by 

=−
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which on simplification gives 
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Distance Modulus Curve 

The distance modulus is given by  

,25log5 += Ld           (64) 

Using (59), we obtain the expression for distance 

modulus )( in terms of red shift parameter )(z  as 
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The observed value of distance modulus )(z at 

different redshift parameters )(z  given in the Table 

below 

 

                                       Table 

 

Redshift )(z  Supernovae Ia )(  Our model 

)(  

0.014 33.73 32.72 

0.026 35.62 34.07 

0.036 36.39 34.79 

0.040 36.38 35.02 

0.050 37.08 35.51 

0.063 37.67 36.01 

0.079 37.94 36.51 

0.088 38.07 36.75 

0.101 38.73 37.06 

0.160 39.08 38.08 

0.240 40.68 39.00 

0.380 42.02 40.05 

0.430 42.33 40.34 

0.480 42.37 40.59 

0.620 43.11 41.19 

0.740 43.35 41.61 

0.778 43.81 41.73 

0.828 43.59 41.88 

0.886 43.91 42.04 

0.910 44.44 42.10 

1.056 44.25 42.46 

 

The observe value of distance modulus at different 

redshift parameters are employed to draw the curve 

corresponding to the calculate value of ).(z The plot 

of observed )(z (dotted line) and calculated )(z  

(solid line) versus redshift parameter )(z showed in 

Fig. 5. 

 
 

IV.  CONCLUSION  

 

In this paper, we have investigated exact solution of 

Einstein’s field equations for a Bianchi type VI 

cosmological model filled variable G and  in the 

presence of bulk viscous stress under the assumption 

that the cosmological term is a function of Hubble 

parameter )(H and expansion scalar is proportional to 

shear scalar. In this paper, the form of cosmological 

term  is physically reasonable as observations 

suggest that  is very small in the present universe. It 

can also be observed that scalar expansion ),( Hubble 

parameter )(H and shear scalar )( decreases with 
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increase of time. The bulk viscosity coefficient ( )  

decrease as time increases. From (41) and (42), we can 

see that energy density and pressure will vanish with 

the increase of cosmic time. Hence they represent 

vacuum cosmological models in general relativity for 

large values of t also the bulk viscosity coefficient ( )  

decrease as time increases. We find 



= constant, 

which shows that the anisotropy in the universe is 

maintained throughout. However it becomes isotropic 

for .1=n We have also taken an account of the 

consistency of our model with observational 

parameters such as proper distance, luminosity 

distance, angular diameter distance, look back time. 

Also we compared the observe value of distance 

modulus with the calculated value of derived model 

(Fig.5 and Table). 
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